49 research outputs found

    Linearizable special cases of the QAP

    Get PDF
    We consider special cases of the quadratic assignment problem (QAP) that are linearizable in the sense of Bookhold. We provide combinatorial characterizations of the linearizable instances of the weighted feedback arc set QAP, and of the linearizable instances of the traveling salesman QAP. As a by-product, this yields a new well-solvable special case of the weighted feedback arc set problem

    New special cases of the quadratic assignment problem with diagonally structured coefficient matrices

    Get PDF
    We consider new polynomially solvable cases of the well-known Quadratic Assignment Problem involving coefficient matrices with a special diagonal structure. By combining the new special cases with polynomially solvable special cases known in the literature we obtain a new and larger class of polynomially solvable special cases of the QAP where one of the two coefficient matrices involved is a Robinson matrix with an additional structural property: this matrix can be represented as a conic combination of cut matrices in a certain normal form. The other matrix is a conic combination of a monotone anti-Monge matrix and a down-benevolent Toeplitz matrix. We consider the recognition problem for the special class of Robinson matrices mentioned above and show that it can be solved in polynomial time

    Travelling salesman paths on Demidenko matrices

    Get PDF
    In the path version of the Travelling Salesman Problem (Path-TSP), a salesman is looking for the shortest Hamiltonian path through a set of n cities. The salesman has to start his journey at a given city s, visit every city exactly once, and finally end his trip at another given city t. In this paper we show that a special case of the Path-TSP with a Demidenko distance matrix is solvable in polynomial time. Demidenko distance matrices fulfill a particular condition abstracted from the convex Euclidian special case by Demidenko (1979) as an extension of an earlier work of Kalmanson (1975). We identify a number of crucial combinatorial properties of the optimal solution and design a dynamic programming approach with time complexity O(n6)

    The multi-stripe travelling salesman problem

    Get PDF
    In the classical Travelling Salesman Problem (TSP), the objective function sums the costs for travelling from one city to the next city along the tour. In the q-stripe TSP with q ≥ 1, the objective function sums the costs for travelling from one city to each of the next q cities along the tour. The resulting q-stripe TSP generalizes the TSP and forms a special case of the quadratic assignment problem. We analyze the computational complexity of the q-stripe TSP for various classes of specially structured distance matrices. We derive NP-hardness results as well as polyomially solvable cases. One of our main results generalizes a well-known theorem of Kalmanson from the classical TSP to the q-stripe TSP

    A new family of scientific impact measures : the generalized Kosmulski-indices

    No full text
    This article introduces the generalized Kosmulski-indices as a new family of scientific impact measures for ranking the output of scientific researchers. As special cases, this family contains the well-known Hirsch-index h and the Kosmulski-index h ((2)). The main contribution is an axiomatic characterization that characterizes every generalized Kosmulski-index in terms of three axioms

    Fast minimum-weight double-tree shortcutting for metric TSP

    No full text
    The Metric Traveling Salesman Problem (TSP) is a classical NP-hard optimization problem. The double-tree shortcutting method for Metric TSP yields an exponential-sized space of TSP tours, each of which is a 2-approximation to the exact solution. We consider the problem of minimum-weight double-tree shortcutting, for which Burkard et al. gave an algorithm running in time O(2(d)n(3)) and memory O(2(d)n(2)), where d is the maximum node degree in the rooted minimum spanning tree (e.g. in the non-degenerate planar Euclidean case, d <= 4). We give an improved algorithm running in time O(4(d)n(2)) and memory O(4(d)n), which allows one to solve the problem on much larger instances. Our computational experiments suggest that the minimum-weight double-tree shortcutting method provides one of the best known tour-constructing heuristics
    corecore